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1. INTRODUCTION

This document is the final report of work conducted under
support of Contract F19628-76-C-0124. The contract was concerned
with finding techniques to improve automated, realtime processing
of Defense Meteorological Satellite Program (DMSP) imagery data
at Air Force Global Weather Central (AFGWC), Offutt AFB,
Nebraska. The work was conducted in two stages. 1In the first
stage, surveys were carried out: 1) to determine AFGWC needs
for DMSP imagery processing; 2) to find current state of the art
techniques in automated imagery processing relevant to meeting
those needs; and 3) to recommend one or more techniques that
would be most promising for AFGWC to adopt next in its continuing
effort to upgrade its capabilities in this c¢ritical area of
meteorological data processing. In the second stage the

recommended technique was demonstrated on selected samples of
DMSP imagery.

The procedures and results of Stage 1 have been separately
reported (Pickett and Blackman, 1976). The rationale, procedures
and results of Stage 2 along with summary and conclusions for the

contract <ffort as a whole are the primary subjects of this
report.

2. BACKGROUND

For background to the presently reported work, we present
first a brief sketch of the conclusions and recommendations from
the work in Stage 1. 1Issues that shaped our approach to Stage 2

are discussed, and the resulting structure and emphasis of the
work are described.
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2.1 Results of Stage 1

The work in Stage 1 resulted first in two general
conclusions and related recommendations. The first conclusion to
be drawn was that in those areas, such as the forecasting area,
where imagery processing is entirely visual, needs for automation
cannot be adequately determined without conducting systems
analyses and information flow studies falling well beyond the
scope of the present contract. It was recommended that such
studies be undertaken.

The second conclusion was that AFGWC lacked a fully
adequate long term strategy for developing an automated system,
particularly in terms of expanding its capabilities to encompass
processing now done visually. It was recommended that such a
long term strategy be developed, one that allows for the
integration of visual and automated processing, probably through
interactive computer techniques, to provide the basis for an
evolutionary approach to full automation.

As a consequence of these two conclusions, it was decided
early in the contract schedule that the most productive effort
would be one that focused on AFGWC's present approach and thrust
in automated imagery processing as represented in the currently
operating 3DNEPH program. Analyses showed that there is a clear
and pressing need there to improve imagery analysis at the
feature abstraction stage, to upgrade capability at the front end
of the system where those features that get passed on to the
pattern recognition component get culled from the full data
stream. For several statistical and practical reasons, spectral
analysis was recommended as the most promising technique for
improved feature abstraction.

-2-




L8

5
%
&
&
8-
%
2
it
3
";‘
.

¢.2 Issues Snaping the Work in Stage 2

Tne point of the second stage of work was to conduct a
feasipility analysis of the recommended technique: first to
demonstrate its consistency with AFGWC needs, in other words, to
show 1its usefulness to AFGWC; and second to show feasibility of
its being interfaced with AFGWC data analysis systems present and
proposed. How that goal was to be achieved within the 1limited
contract time and resources reserved for it was to depend very
largely on the particular technique that was recommended. Our
approach with respect to the particular recommendation of using
spectral analysis for improved feature abstraction was affected
by two main considerations.

The first consideration was that little more could be done
from an analytical standpoint to demonstrate the usefulness of
spectral features for cloud classification than had already been
done in Stage 1. As our surveys revealed, there are no extant
mathematical/statistical models, or even an adequate body of
structural descriptions for telling what features of satellite
images are critical for distinguishing among cloud classes. Part
of AFGWC's long term strategy for automation certainly should be
to look recurrently for such aids and provide for ways to
integrate them into the system as they become available. In the
meantime, however, there is really no adequate way to tell how
useful a particular algorithm for feature abstraction will be
without conducting empirical studies, and those studies have to
be substantial enough to permit valid generalization of the
findings to field operations. Such studies have to be made on
samples of imagery for every cloud class that occurs with
appreciable frequency, in order to test for all potentially
significant errors of classification. And for every one of those
classes, the sample has to be sufficiently large and well drawn

Y




to be validly representative of that class. It is not just the
numbers of imagery samples required that define the magnitude of
the effort involved, it is also the need for adequate care in
determining the "true" classification of each image. Various
options are open for reducing the magnitude of such studies, e.g.
by explicitly restricting the geographical or seasonal domain of
sampling, or by restricting the domain of explicitly tested
classifications, but even a highly pared version of such a study
is clearly beyond the scope of this contract effort. It was
decided, therefore, to focus the work in Stage 2 on the second
and more limited aspect of feasibility--determining whether
spectral analysis was compatible with AFGWC data analysis
systems. It certainly was possible within the remaining contract
effort to demonstrate spectral analysis of DMSP imagery taken
from the AFGWC data analysis system.: A demonstration of
compatibility at that level was set as the minimum goal for Stage
25

The second consideration was that as a result of our first
report and related briefings, AFGWC decided to wundertake a
large-scale empirical study of the type needed for an adequate
test of spectral analysis. It was decided that AFGL would assist
in this endeavor by providing a computer programmer to do the
encoding necessary to get spectral analysis up and running on the
AFGWC data analysis system. The test was to be conducted as soon
as the necessary computer coding, experimental designing and data
sampling could be achieved. The test was to be designed to
assess the impact of spectral analysis on accuracy of cloud
classification in the 3DNEPH context.

In view of that decision, it was determined that BBN should

coordinate its activity in Stage 2 with that of the AFGL
programmer. The intent was to insure, insofar as possible, that

il
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all computer coding for BBN's demonstrations and tests would be
airectly transferable to the AFGWC data analysis system. Thus, a
smooth connection was sought between BBN's work in Stage 2 and
that work on the large-scale empirical study.

Subsequent to setting these goals, a decision was made to
add an item of work to the contract concerned with estimating
spatial power spectral characteristics of a range of pure cloud
types. The point of this activity was that it might provide
useful leads in the search for discriminating spectral features.
The plan was to arrive at purely qualitative characterizations of
the power spectra based on visual inspection of typical examples
of pure cloud types as given by Conover (1962). Thus, this
activity was added to the work in Stage 2.

-

z.3 Structure and Emphasis of Work in Stage 2

The main emphasis of work in Stage 2 was on guiding
implementation of spectral analysis and in conducting selected
checks and demonstrations on DMSP imagery data.

As regards the added item of work, an effort was made to
determine power spectra for a range of cloud types, but it was
judged that that was not feasible. First, the intent of that
effort was that the estimates be obtained from purely visual
inspection of available cloud imagery samples (as given, e.g., by
Conover, 1962) in comparison to standard test patterns for which
spectra had already been computed. Detailed consideration of
that approach led to the conclusion that there was an
insufficient body of visually comparable standard test patterns
in the literature, for which spectra had been computed, to permit
such purely visual estimates. Second, consideration was given to
the possibility of computing spectra on the imagery samples given
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by Conover but this also was judged to be not justified, even by
optical means, for two main reasons. First, there was no way to
guarantee that spectral signatures obtained for those imagery
samples would generalize to the DMSP images taken at different
altitudes, by different sensors, and subjected to corrections not
common to the Conover images. Second, it was judged that any
leads on critically discriminating spectral features, obtained
from comparison of spectra based on just the few samples provided
by Conover, would be very suspect. Estimates of error of the
spectral signature would have to be available to obtain 1leads

with any acceptable degree of reliability. Better, it was
Judged, to wait for data obtained in the 1large scale empirical
study. Thus, the effort to estimate spectra was carried only to

the point where it was judged to be infeasible, and greater time
was spent on the main line of activity.

One aspect of the main Stage 2 effort which required more
attention than was originally supposed, was communication with
AFCWC, particularly in planning the large scale empirical study.
Joint planning was necessary for BBN to provide adequate guidance
to the AFGL programmer and for BBN to coordinate its
demonstrations and checks of spectral analysis, as far as
possible, with AFGWC's preparations.

b
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3. LDEMONSTKATIONS OF SPECTRAL ANALYSIS ON SELECTED SAMPLES
OF DMSP IMAGERY DATA

Implementation of spectral analysis in code compatible with
AFGC data analysis systems was primarily the responsibility of
AFGL. BBN has contributed advice and direction to that work, and
modified certain of the reported approaches (Booth, 1973, Sikula,
1974), particularly as regards the computation of wave number
spectra. Setting up, overseeing and interpreting the
demonstration of spectral analysis on selected samples of DMSP
imagery data was BBN's other primary responsibility.

In this section, we discuss first the rationale behind
and the logic of implementing spectral analysis and spectral
feature-based classification. We then present the procedure and
results of demonstrations and tests on selected samples of DMSP
imagery data.




<.1 hationale

Clearly, the immediate point of implementing and checking

spectral analysis in this effort was to enable AFGWC

to proceed

with direct tests of its utility--perhaps as the key to a stand

alone satellite data processor--via the planned

large scale
empirical study. But the primary importance of developing power
spectral analysis within the 3DNEPH framework is not

simply to

puild, immediately, a better processor. More important, it is to

assess the potential value of going in this direction of signal

processing, to gauge the 1long run  benefits

and costs,

improvements and limitations of this next level of processing

capability. The operational success of using spectral

for classification depends foremost on the

s

features

presence of
information in the recorded data stream; n¢ transformation of

that data can create the required information if.it is absent.

| For certain classification tasks, HR data may

provide

sufficiently fine detail, while for other tasks even VHR data may
not have adequate resolution. Similarly, information required

for classification may be contained separately or jointly in ‘the

visible and infrared (IR) spectral regions,

processor.

B

v-

or 1t may
reside in a region (e.g., microwave) not presently sensed.
Identifying and understanding processor behavior in cases such as
these as. they occur in the operational scenario will provide
guidance towards tpe continuing improvement of the satellite data




3.2 Ilmplementation

The conversion of raw data to labeled cloud type will
involve the computation of power spectra, conversion of these
data to wave number spectra (as discussed below) and computation
of a statistic sufficient for classification.

3.2.1 wo-Di sion S tra and the Fast-Fourier

The Discrete Fourier Transform (DFT) in two dimensions is
defined as

2 N M -i20 (3£ _(Ax) + k£ (Ay)]
a(f ,f)= 1 I a[j(ax), k(Ay)] e * Y
.. X j=1 k=1

(1)

with}ﬁ«»a representing Fourier transform pairs.

If we let NzM, Ax = Ay = T/N (with T the analysisl window
size), and compute £x9 fy only at integer multiples of 5 " then

;(nm)-g gaﬂ = e-_i_%ll(jn+km)
; ool o T

(2)




which 1is the defining form of the FFT. The

inverse FFT need not

A concern us here because it will not be used below. Note that for

n=m=0, we have

{ 4 N N :
i a (o0,0) = I 3 a 1% . kg
i j=1 k=1

which is the sum over the data and therefore

so that the value of the spectrum at (O,C)
average. Although we have taken this op

vs. random processes. Involved here is
coherent and incoherent summation. Furth
deferred to the section treating processing r

array of data representing the first qu
dimensional spectral plane. Because of the
nature of the FFT, the entire spectral plane
from first 'quadrant data, allowing direct
number spectra. Figure 1 shows schematica
comprising the original 8x8 (upper righth
data, periodically extended. The numbers in

considered as the indices (relative frequ

indices implied. That is, the number 70 wou

=10~

(3)

N2 times the average

. value over the TxT data window. When computing wave number
‘ spectra, we may prefer to normalize Equation 2 by dividing by N2

wili' be the data
tion in our initial

, : work, there is a basic normalization dichotomy for deterministic

a- conflict between
er discussion is
esults.

Computing Equation 2 using the FFT algorithm produces an

adrant in the two
spectrally periodic
can be generated
computation of wave
lly a 16x16 array
and corner) array of
the arrays may be
encies) in a FORTRAN

array dimensioned (0/7, 0/7), with the comma separating the

ld refer to location

|




Figure 1.
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7,0, while .the number 57 refers to 5,7, etc. Equivalently, the
number 70 gives the octal location (decimal 56) of the element in
question for a wunidimensional storage (0/63), e.g., a(0,0) is
found in location 0, a(2,6) is in decimal location 22, and a(7,7)
is in decimal location 63.

3.2.2 Wave Number Spectra

The need for computing wave number spectra or some variant
thereof arises from the fact that we wish to insensitize the
classifier to the orientation of a given cloud pattern. In
Sikula (1974), and also apparently from his computer program, the
wave number spectral components are computed as the sums of
spectral amplitudes (la(n,m)|) for those elements falling within
corresponding annular bands in the freqheqcy plane. Each band is
one unit in width and symmetrically disposed radially about
integer multiples of the radial " fundamental® frequency 1/T
That is, at least for n,m < N/2, compute '

P = Vnz ;mgr + .5

(4)

where extracts the greatest integer not exéeeding the
expression witnin, and add la(n,m)| to the pth wave number.
For n 2 N/2, or m 2 N/2, or n,m > N/2, there is some question as
to what actual procedure was used. It is important to note,
however, that wave numbers computed from FFT indices directly are

e 0
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not referenced to the principal part of the (aliased) spectrum
when either index exceeds the Nyquist frequency. Consequently,
direct wuse of Equation 4 and elimination of those spectral
components for which p > N/2 (or worse, p> N/2), will eliminate
much useful data, particularly those components in the second and
fourth quadrants, as.,can be seen in Figure 1 (e.g., a(2,5),
a(6,3). :

To properly compute wave number spectra as sums over annular
regions, we subtract any given index from N if it exceeds N/2:

n' = min(n,N-1) (5)

m' = min(m,N-m) (6)

where min( ) extracts the smaller of the two volumes within the
parenthesis. j

Equation (4) may then be applied to N!' and m' to determine the
proper total wave number. Here, we are merely exploiting the
periodic nature of the FFT and representing n and m by their
values within the principle part of the spectrum ( I 1< N/2, ]f |
£ N/2 ). Although we require this shifted data to fall withln
the Nyquist region or principle spectral part, this requirement
does pot simply limit the useful range of p to p<N/2, since it is
clear that fy = fy = N/2 yields p = i% N. In essence, aliasing
occurs above frequencies given by the square region constraint
el s Ifyl < N/2) and not by any equivalent one-dimensional
constraint on p. Thus, we ultimately use the NxN spectral
components of the firsi quadrént, i.e., all the FFT data, but
combine their magnitudes based on first applying ‘Equations (5)
and (6), and then Equation (4).

Using Sikula's method described above, magnitudes of
spectral components summed within annular bands become wave

number spectra. Booth (1973) wused various sums of normalized

g
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power spectral components as his wave number spectra. The actual
normalization wused by Booth 1is not explicitly given. Our
approach, while similar in spirit to these two, differs
numerically because: 1) we compute the root mean square (rms)
value of the amplitude of those spectral components in each band
(equivalently, the square root of the average power), and 2) all
components of the two dimensional spectrum are utilized. One
problem with using sums rather than averages for wave number
spectra, which will arise (as it does in Sikula's data) when
power spectral covariance data are not used to scale the spectra
(see below), is that meaningless fluctuations are incorporated in
the wave number spectra due solely to the manner in which points
on a Cartesian grid fall within the annular spectral bands. A
second problem, again mitigated by the use of covariance data, is
that summing over annular bands emphasizes high spatial
frequencies and distorts the spectrum in a manner akin to
differentiating the input data. While there are arguments on
both sides of this issue, we suggest that averaging rather than
summing produces spectra of greater intuitive and diagnostic
value. Figures 2 and 3 serve to illustrate this point.

Figure 2 shows wave number spectra for these cases, with
data taken directly from Sikula's report. Case I is reported as
broken low level cloudiness, Case II as small scale cumulus and
Case III is 1labeled wispy cirrus. From a textural standpoint,
images in the report show Case II to contain many small cloud
elements, Case I to contain many small and several large
elements, and Case III to be of a slightly mottled but mostly
uniform nature. Replotting the data after dividing each summed
wave number spectral component by the number of terms that were
used in the sum, we have converted Sikula's data to average wave
number spectra, as shown in Figure 3. These are not rms values
because we do not know the individual data values within each

SN
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Figure 2. Three wave number spectra, after Sikula (1974).
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band, but only their sum. 1In addition to a great increase in
smoothness, all the curves of Figure 3 evidence a general low
pass characteristic we most often would expect to see in the
spectra of clouds and other similar textures. Note that the
spectra shown in Figure 3 are easily understood in terms of the
imagery. That 1is, the spectrum of Case I is consistent with a
mixture of small and large elements, Case II is consistent with
small elements, and Case III indicates little textural variation
beyond wave number four. In fact, for Case III it appears
plausible that the spectral constancy abbve wave number ten is
not a direct function of the cloud condition but is indicative of
spectrally white system noise. Comparing wave number spectra for
Cases I and II, we see a strong similarity for spectral
components above wave number six which is reinforced by a
corresponding similarity in the small cloud elements of the two
images.
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3.2.3 (Classification of Cloud Types

Converting radiometric data to wave number spectra is a data
reduction process which can also be thought of as producing
spectral features for input to a classifier. In Pickett and
Blackman (1976)we briefly treat linear discriminant classifiers
as particularizations of the more general quadratic discriminant
classifier and related to the concept of minimum distance.
Considering wave number spectra as features and treating the
class conditional probability densities for the feature vectors
as multivariate normal, we have (see Duda and Hart, 1973, for
example)

g (a) = - %(a_ - u_i)t :;‘(a_t- uy) - % log [Z;| + log Pl(cy)

(7)

Here, a 1is the feature vector (wave number spectra alone or in
concert with first order statistical measures), "¢" denotes
matrix transpose, gy(a) the discriminant for the ithclass, u; the
mean vector for that class, P(ci) the a_priori probability of ith
class occurrence, and : the covariance matrix with elements
given by

Oy = E [lay = uj) (ay = uy)] (8)

-18~




The operator E[ ] is the expectation with respect to the
ensemble. Expanding Equation (7) yields

L TS R =% t
g, (a) 32 I a+ (Tt updtat e, (9)
with
EEM S <l
0, 3 Uy I b -3 log IZiI + log P(cy) (10)

The general form of Equation (9) indicates quadratic discriminant
functions.

4 In our prior report, we note that if 21 is equal to 021 (I
¥

the identity matrix), or even if Xi is the same for all classes
(=L, say), then the discriminant surfaces are hyperplanes and the
discriminants are linear. To construct linear discriminants,
Booth used the average of the covariance matrices for all classes
as the covariance matrix for each class. However, we are not so
much interested in linearizing the classification procedure as we
are in simplifying the computations. Since we need to compute
once for each class and can compute once and store (2;1 Ei)t

as a new vector p' for each class, the potential computational
complexity resides in the first term on the righthand side of
Equation 9. While in general, an NxN matrix will require N2+N
multiplications and a similar number of additions (for each

~19-
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class), if 21 is a diagonal matrix we can scale each element of a
by its class conditional standard deviation and compute the norm
of the scaled vector. This latter computation will require only
2N multiplications and N additions for each class, which should
hardly be noticed when added to the FFT and wave number
computations. Assuming or even forcing a diagonal form for Zi is
quite reasonable, given the asymptotically independent nature of
power spectral estimates and the fact that the data window has no
spectral leakage at the FFT frequencies, i.e., the data window
does not introduce dependence between different spectral
components. Thus while it would be nice if all class conditional
covariance matrices are approximately eq®ivalent to each other,
this condition 1is not required for rapid classification.
Accepting the covariance matrices as ghe§ are rather than
averaging them (or ignoring them) should enhance the accuracy of
the classification procedure.

3.3 Processing Cloud Image Data

During the later stages of this program, as the capability
to compute wave number spectra was developed at AFGL, we
attempted to perform a pilot study on selected weather imagery.
Unfortunately, the images available were from display tapes and
represented only HR data. Also, while three areas were selected
containing mixed stratus and strato cumulus in the first, stratus
or fog, in the second, and cumulus and cumulosnimbus in the
third, difficulty in reading the Cu-Cb area on the tape left us
with two areas containing somewhat similar basic cloud types. It
was decided, therefore, to use the two data sets as a means to
test and debug programs and, hopefully, to demonstrate several of
the elements of the spectral analysis-classification scheme.
Actual classification was not performed because: (1) the computer
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programs, although straightforward, have not been written,
(2)climatology data, required for Bayesian classification, were
not yet available, and (3) using data from mixed and overlapping
cloud types as a training set is not simple nor recommended.

3.3.1 Average Wave Number Spectra

Figure U4 shows average wave number spectra for each of two
regions, comprising 64 1/8 mesh boxes, i.e., a whole mesh box.
Consequently, the FFT's are computed on 8x8 arrays and wave
number spectra are produced for wave numbers up to six (6<4V/7
+.547). Normalization of all data has been set so that the
average value is the d.c. (zero frequency) component. i
classifications were to proceed from this point using these data
sets for training purposes, then the d.c. component would
strongly dominate the classification procedure. However, if we
use the sample standard deviations for the wave number spectra,
computed for each data set at each wave number, a different
situation emerges. In Figure 5, we have plotted the ratios of
wave number spectra to standard deviation. Note that the
relative importance of the d.c. component diminishes greatly,
particularly for the case representing stratus or fog.

Returning to Figure U4, we see little detail in either wave
number spectrum apart from the disparity between the d.c.
component and components at wave numbers one through six. Since
VHR data were not available to allow an investigation of higher
spatial frequencies, we computed two FFT's, one for the 64x6U4
array representing the stratus-stratocumulus region, and the
second representing the stratus-fog region; these data are shown
in Figure 6. Note that wave number eight in this figure
corresponds roughly to wave number one in Figures 4 and 5. Exact
correspondence is not expected because additional spectral

.
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Wave number spectra from two whole mesh boxes.
Each spectrum is from one 64 x 64 array.
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components from different orientations and frequencies contribute
to the average for the 64x64 based wave number spectra. To
compute the spectra of Figure 6 and scale them to provide
correspondence with the spectra of Figure 4, a multiplier of
eight was introduced. This brings up the normalization dichotomy
mentioned above. Setting the d.c. value to the array average and
using the same factor to normalize the wave number spectra
ignores the factor T2 which should also be applied as a
multiplier to the power spectral components. Without this factor
and except for the d.c. which remains the average over the
window, wave number spectra will decrease as the number of terms
in the FFT increases. However, if we multiply all components of
the power spectrum by T2, then the d.c. component will increase
as the number of terms increases, even though other spectral
components may fluctuate about the same general level. Rather
than consider alternative normalizations, or combine the two
mentioned above, it is easily seen that use of the variance data
as 1in Figure 5 resolves the problem, since whatever scale factor
is used will appear in both the spectral component and its
standard deviation and so be cancelled in the ratio.

While there are obviously more details in the spectra of
Figure 6 than in the corresponding spectra of Figure 4, the
former are not exceedingly more useful than the latter. From the
low wave number behavior in Figure 6, it appears that the
stratus-stratocumulus region may represent a predominantly
uniform coverage, whereas the flattening of the stratus-fog
spectrum towards low wave numbers indicates that the 64x64 array
(whole mesh box) encompasses several correlation intervals.
Unfortunately, absence of data with sufficient resolution (VHR
data) makes high frequency distinctions mere conjecture. In any
spectral analysis, there is no substitute for adequate spectral
and spatial resolution.
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3.4 Summary of Results

Since the completion and acceptance of our R&D Design and
Evaluation Report (Pickett and Blackman, 1976), we have supported
AFGWC in developing the capability to compute wave number spectra
for cloud classification. Towards this end, we have: (1) aided
the FFT implementation, (2) developed a modified wave number
spectrum formulation, (3) recast and evaluated certain of
Sikula's data (Sikula, 1973) in terms of this modified form, (4)
directed the processing of HR data from display tapes to test
programs and demonstrate feasibility, and (5) established an
approach to be used in the development of a classifier based on
wave number spectra. In this last regard, computation of the
FFT, and conversion to wave number spectra produces spectral
features; quadratic discriminants using a diagonal covariance
matrix will classify the data into c¢loud types. Every effort
must be made to ensure the generation of a properly labeled truth
set of images, because the success of the classifier will depend
heavily on the accuracy with which class conditional means and
variances are estimated.

4. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations were developed
in the course of this contract and are discussed in detail in one
or the other of the two reports:

(1) Further studies are needed to establish the full range of

need for imagery processing at AFGWC, particularly with
respect to automating imagery processing now done visually.
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(2)

(3)

(4)

A long term strategy that provides for an evolutionary
approach to full automation needs to be developed.
Development of an image processing system with interactive
capability will probably be required to provide a basis for
monitoring and documenting visual processing as a first step
in that evolutionary process.

Inadequacies at the feature abstraction stage in the
present 3DNEPH program warrant immediate attention.

In the absence of detailed understanding of what features
should be abstracted, spectral analysis is the most
promising approach to adopt, both from the standpoint of
efficiency of feature abstraction and robustness of the
abstracted information.

To advance demonstrations of the feasibility of spectral
analysis beyond what was achieved analytically in this
program, a large scale empirical study is required.
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